The Shape of the Correlation Function

Jakub Cimerman¹ Christopher Plumberg² Boris Tomášik^{1, 3}

¹Czech Technical University, FNSPE, Prague, Czech Republic

²Lund University, Lund, Sweden

³Matej Bel University, FNS, Banská Bystrica, Slovakia

31 July 2020

- Correlation femtoscopy has become a standard technique for the experimental analysis of heavy-ion collisions
- Two-particle correlation functions are often fitted by Gaussian
- However, it seems that the real shape is not Gaussian
- The shape is often better reproduced by Lévy stable distribution
- It has been suggested that Lévy shape with specific exponent may identify the critical point
- We check if the observed shape can be caused by non-critical phenomena

Correlation function is defined as ratio of two-particle spectrum and one-particle spectra

$$
C(p_1, p_2) = \frac{P_2(p_1, p_2)}{P(p_1)P(p_2)} = \frac{E_1 E_2 \frac{\mathrm{d}^6 N}{\mathrm{d} p_1^3 \mathrm{d} p_2^3}}{\left(E_1 \frac{\mathrm{d}^3 N}{\mathrm{d} p_1^3}\right) \left(E_2 \frac{\mathrm{d}^3 N}{\mathrm{d} p_2^3}\right)}
$$

We use correlation function in the form

$$
C(q, K) - 1 \approx \frac{\int d^4x S(x, K) \exp(iqx)|^2}{\left(\int d^4x S(x, K)\right)^2}
$$

•
$$
K = \frac{1}{2}(p_1 + p_2), q = p_1 - p_2
$$

 \leftarrow

Coordinate system

 \bullet *out, side, long* coordinate system

 \leftarrow

 290

Parametrization of correlation function

Gaussian parametrization

$$
C_G(\vec{q}, \vec{K}) = 1 + \lambda \exp\left[-\sum_{i,j=o,s,l} R_{ij}^2 q_i q_j\right]
$$

• Lévy parametrization

$$
C_L(\vec{q}, \vec{K}) = 1 + \lambda' \exp\left[-\left|\sum_{i,j=o,s,l} R_{ij}^{'2} q_i q_j\right|^{\alpha/2}\right]
$$

• One-dimensional Lévy parametrisation

$$
C_L(Q) = 1 + \lambda' \exp(-|R'Q|^\alpha)
$$

• Lévy index characterizes the shape of the correlation function • $\alpha = 2 \Rightarrow$ $\alpha = 2 \Rightarrow$ $\alpha = 2 \Rightarrow$ Gauss $\alpha = 1 \Rightarrow$ exponential

 QQ

– Each event is different

- One-dimensional projection
- Averaging over many events may affect the shape

• \overrightarrow{K} averaging

$$
C(q, K) \approx 1 + \frac{\langle \left| \int d^4x S(x, K) \exp(iqx) \right|^2 \rangle_{ev}}{\langle \left(\int d^4x S(x, K) \right)^2 \rangle_{ev}}
$$

• Resonance decays

- Correlation function as a function of a scalar quantity
- One-dimensional projection

– Lorentz-invariant Q

$$
Q_{LI}^2 = -q^{\mu}q_{\mu}
$$

• \overrightarrow{K} averaging

– Longitudinally boost-invariant Q

$$
Q_{LBI}^2 = \sqrt{(p_{1x} - p_{2x})^2 + (p_{1y} - p_{2y})^2 + q_{long,LCMS}^2}
$$

• Resonance decays

- The size of a bin in \vec{K} cannot be taken arbitrarily small
- One-dimensional projection
- Correlation function must be averaged over some pair momentum interval
- \vec{K} averaging
- $C(q, K) \approx 1 + \frac{\int_{bin} d^3 K |\int d^4 x S(x, K) \exp(iqx)|^2}{2}$ $\int_{bin} d^3K \left(\int d^4x S(x,K) \right)^2$
- Resonance decays

- One-dimensional projection
- Different resonances contributes with different lengthscales and timescales

- \overrightarrow{K} averaging
	-
- Resonance decays

– Correlation function therefore must deviate from a Gaussian form

This theoretical model is characterized by the emission function

$$
S(x,p)\mathrm{d}^4x = \frac{m_t \cosh(\eta - Y)}{(2\pi)^3} \mathrm{d}\eta \mathrm{d}x \mathrm{d}y \frac{\tau \mathrm{d}\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right) \exp\left(-\frac{E^*}{T}\right) \Theta\left(1 - \overline{r}\right)
$$

Cooper-Frye prefactor

Spatial anisotropy describes shape of the fireball

$$
R(\theta) = R_0 \left(1 - \sum_{n=2}^{\infty} a_n \cos (n(\theta - \theta_n)) \right)
$$

• Flow anisotropy describes distribution of transverse rapidity

$$
\rho(\overline{r}, \theta_b) = \overline{r}\rho_0 \left(1 + \sum_{n=2}^{\infty} 2\rho_n \cos \left(n(\theta_b - \theta_n) \right) \right)
$$

This theoretical model is characterized by the emission function

$$
S(x,p)\mathrm{d}^4x = \frac{m_t \cosh(\eta - Y)}{(2\pi)^3} \mathrm{d}\eta \mathrm{d}x \mathrm{d}y \frac{\tau \mathrm{d}\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right) \exp\left(-\frac{E^*}{T}\right) \Theta\left(1 - \overline{r}\right)
$$

Gaussian smearing in proper time

Spatial anisotropy describes shape of the fireball

$$
R(\theta) = R_0 \left(1 - \sum_{n=2}^{\infty} a_n \cos (n(\theta - \theta_n)) \right)
$$

• Flow anisotropy describes distribution of transverse rapidity

$$
\rho(\overline{r}, \theta_b) = \overline{r}\rho_0 \left(1 + \sum_{n=2}^{\infty} 2\rho_n \cos \left(n(\theta_b - \theta_n) \right) \right)
$$

This theoretical model is characterized by the emission function

$$
S(x,p)\mathrm{d}^4x = \frac{m_t \cosh(\eta - Y)}{(2\pi)^3} \mathrm{d}\eta \mathrm{d}x \mathrm{d}y \frac{\tau \mathrm{d}\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right) \exp\left(-\frac{E^*}{T}\right) \Theta\left(1 - \overline{r}\right)
$$

Boltzmann thermal distribution

Spatial anisotropy describes shape of the fireball

$$
R(\theta) = R_0 \left(1 - \sum_{n=2}^{\infty} a_n \cos (n(\theta - \theta_n)) \right)
$$

• Flow anisotropy describes distribution of transverse rapidity

$$
\rho(\overline{r}, \theta_b) = \overline{r}\rho_0 \left(1 + \sum_{n=2}^{\infty} 2\rho_n \cos \left(n(\theta_b - \theta_n) \right) \right)
$$

This theoretical model is characterized by the emission function

$$
S(x,p)\mathrm{d}^4x = \frac{m_t \cosh(\eta - Y)}{(2\pi)^3} \mathrm{d}\eta \mathrm{d}x \mathrm{d}y \frac{\tau \mathrm{d}\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right) \exp\left(-\frac{E^*}{T}\right) \Theta\left(1 - \overline{r}\right)
$$

transverse box profile

Spatial anisotropy describes shape of the fireball

$$
R(\theta) = R_0 \left(1 - \sum_{n=2}^{\infty} a_n \cos (n(\theta - \theta_n)) \right)
$$

• Flow anisotropy describes distribution of transverse rapidity

$$
\rho(\overline{r}, \theta_b) = \overline{r}\rho_0 \left(1 + \sum_{n=2}^{\infty} 2\rho_n \cos \left(n(\theta_b - \theta_n) \right) \right)
$$

This theoretical model is characterized by the emission function

$$
S(x,p)\mathrm{d}^4x = \frac{m_t \cosh(\eta - Y)}{(2\pi)^3} \mathrm{d}\eta \mathrm{d}x \mathrm{d}y \frac{\tau \mathrm{d}\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right) \exp\left(-\frac{E^*}{T}\right) \Theta\left(1 - \overline{r}\right)
$$

 $E^* = p_\mu u^\mu$ - energy in the local rest frame

Spatial anisotropy describes shape of the fireball

$$
R(\theta) = R_0 \left(1 - \sum_{n=2}^{\infty} a_n \cos (n(\theta - \theta_n)) \right)
$$

• Flow anisotropy describes distribution of transverse rapidity

$$
\rho(\overline{r}, \theta_b) = \overline{r}\rho_0 \left(1 + \sum_{n=2}^{\infty} 2\rho_n \cos \left(n(\theta_b - \theta_n) \right) \right)
$$

This theoretical model is characterized by the emission function

$$
S(x,p)\mathrm{d}^4x = \frac{m_t \cosh(\eta - Y)}{(2\pi)^3} \mathrm{d}\eta \mathrm{d}x \mathrm{d}y \frac{\tau \mathrm{d}\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right) \exp\left(-\frac{E^*}{T}\right) \Theta\left(1 - \overline{r}\right)
$$

 $\overline{r} = \frac{r}{R(\theta)}$ - dimensionless transverse coordinate

Spatial anisotropy describes shape of the fireball

$$
R(\theta) = R_0 \left(1 - \sum_{n=2}^{\infty} a_n \cos (n(\theta - \theta_n)) \right)
$$

• Flow anisotropy describes distribution of transverse rapidity

$$
\rho(\overline{r}, \theta_b) = \overline{r}\rho_0 \left(1 + \sum_{n=2}^{\infty} 2\rho_n \cos \left(n(\theta_b - \theta_n) \right) \right)
$$

This theoretical model is characterized by the emission function

$$
S(x, p) \mathrm{d}^4 x = \frac{m_t \cosh(\eta - Y)}{(2\pi)^3} \mathrm{d}\eta \mathrm{d}x \mathrm{d}y \frac{\tau \mathrm{d}\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right) \exp\left(-\frac{E^*}{T}\right) \Theta\left(1 - \overline{r}\right)
$$

$$
\eta = \frac{1}{2} \ln\left(\frac{t + z}{t - z}\right) \qquad \tau = \sqrt{t^2 - z^2}
$$

Spatial anisotropy describes shape of the fireball

$$
R(\theta) = R_0 \left(1 - \sum_{n=2}^{\infty} a_n \cos (n(\theta - \theta_n)) \right)
$$

• Flow anisotropy describes distribution of transverse rapidity

$$
\rho(\overline{r}, \theta_b) = \overline{r}\rho_0 \left(1 + \sum_{n=2}^{\infty} 2\rho_n \cos \left(n(\theta_b - \theta_n) \right) \right)
$$

This theoretical model is characterized by the emission function

$$
S(x,p)\mathrm{d}^4x = \frac{m_t \cosh(\eta - Y)}{(2\pi)^3} \mathrm{d}\eta \mathrm{d}x \mathrm{d}y \frac{\tau \mathrm{d}\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right) \exp\left(-\frac{E^*}{T}\right) \Theta\left(1 - \overline{r}\right)
$$

• Spatial anisotropy describes shape of the fireball

$$
R(\theta) = R_0 \left(1 - \sum_{n=2}^{\infty} a_n \cos (n(\theta - \theta_n)) \right)
$$

Flow anisotropy describes distribution of transverse rapidity

$$
\rho(\overline{r}, \theta_b) = \overline{r}\rho_0 \left(1 + \sum_{n=2}^{\infty} 2\rho_n \cos \left(n(\theta_b - \theta_n) \right) \right)
$$

 -10 -10 цç, ċ $\overline{10}$ $p_2 = 0.29$ c.

30 a

10

5 $\mathbf 0$

DRAGON

[Comp. Phys. Comm. 180 (2009) 1642]

- Monte Carlo event generator
- Based on the Blast-Wave model with added resonance decays
- For this study we generated 50,000 events with parameters

• To generate correlation functions we used **CRAB** [S. Pratt]

Hydrodynamics

- Hydrodynamical model **iEBE-VISHNU** [Comp. Phys. Comm. 199] (2016) 61]
	- 2+1D hydrodynamic simulation
	- Israel-Stewart viscous hydrodynamics
	- Glauber MC initial conditions
- Extension to HBT using **HoTCoffeeh** [Phys. Rev. C 98 (2018) 034910]
	- calculates event-by-event correlation functions directly from Cooper-Frye integrals
	- includes all resonances
	- no hadron phase nor hadron cascades
- For this study we generated 1,000 events with parameters

0 − 10% Au+Au collisions at 200A GeV
 $T_{fo} = 120 \text{ MeV}$ $\eta/s = 0.08$ $T_{fo} = 120 \text{ MeV}$

 QQ

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Comparison of different non-Gaussian effects

- Results of hydrodynamical approach
- Comparison of:

thermal vs. full single-event vs. event-averaged Q_{LBI} vs. Q_{LI}

 \leftarrow

Event-by-event fluctuations

- Study of averaging over events influence of spatial anisotropies
- Unaveraged $a_2 = 0.05$ Averaged $a_2 \in (-0.1; 0.1)$

Event-by-event fluctuations

- Study of averaging over events influence of flow anisotropies
- Unaveraged $\rho_2 = 0.05$ Averaged $\rho_2 \in (-0.1; 0.1)$

Event-by-event fluctuations

- Study of averaging over events influence event plane direction
- Unaveraged $\theta_2 = 0$ Averaged $\theta_2 \in (0; \pi)$

• Resonance decays push down the value of α by 0.2 for both models

 \leftarrow

 290

Correlation function in three dimensions

• 3D correlation function fitted via 1D Lévy function in each direction separately

 \leftarrow

 290

Profiles of emission sources

To understand the differences in different directions we check the shape of the source which emits pions

• Pions are taken with $K_T \in (300; 400)$ MeV

Jakub Cimerman [The Shape of the Correlation Function](#page-0-0) 31 July 2020 14 / 18

3D fit to correlation function

• 3D Lévy fit to 3D correlation function

 \leftarrow

 290

- Even Lévy parametrisation cannot describe our correlation functions perfectly
- To get the corrections to higher orders, we decompose the data into Lévy expansion up to 1st order

$$
C(Q) = 1 + \lambda e^{-R^{\alpha}Q^{\alpha}} \left[1 + c_1 L_1(Q|\alpha) \right]
$$

- L_1 is Lévy polynomial, c_1 is complex Lévy coefficient
- However, such fits are very unstable

Lévy expansion

The first-order corrections are not negligible ⇒ our correlation functions are neither Lévy-shape

Jakub Cimerman [The Shape of the Correlation Function](#page-0-0) 31 July 2020 17 / 18

 290

Conclusions

- Index of the Lévy-stable parametrization fitted to the correlation function may be influenced by a variety of different mechanisms
- It deviates substantially from the value of 2
- The most significant deviations arise from
	- projection from 3D relative momentum \vec{q} to scalar Q
	- resonance decays
- These conclusions are model-independent