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31 July 2020

Jakub Cimerman The Shape of the Correlation Function 31 July 2020 1 / 18



Introduction

Correlation femtoscopy has become a standard technique for the
experimental analysis of heavy-ion collisions

Two-particle correlation functions are often fitted by Gaussian

However, it seems that the real shape is not Gaussian

The shape is often better reproduced by Lévy stable distribution

It has been suggested that Lévy shape with specific exponent may
identify the critical point

We check if the observed shape can be caused by non-critical
phenomena
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HBT formalism

Correlation function is defined as ratio of two-particle spectrum
and one-particle spectra

C(p1, p2) =
P2(p1, p2)

P (p1)P (p2)
=

E1E2
d6N

dp31dp32(
E1

d3N
dp31

)(
E2

d3N
dp32

)
We use correlation function in the form

C(q,K)− 1 ≈ |
∫

d4xS(x,K) exp(iqx)|2(∫
d4xS(x,K)

)2
K =

1

2
(p1 + p2), q = p1 − p2
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Coordinate system

out, side, long coordinate system
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Parametrization of correlation function

Gaussian parametrization

CG(~q, ~K) = 1 + λ exp

− ∑
i,j=o,s,l

R2
ijqiqj


Lévy parametrization

CL(~q, ~K) = 1 + λ′ exp

−∣∣∣∣∣ ∑
i,j=o,s,l

R
′2
ijqiqj

∣∣∣∣∣
α/2


One-dimensional Lévy parametrisation

CL(Q) = 1 + λ′ exp(−|R′Q|α)

Lévy index characterizes the shape of the correlation function

α = 2⇒ Gauss α = 1⇒ exponential
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Effects leading to non-Gaussianities

Ensemble averaging

One-dimensional projection

~K averaging

Resonance decays

– Each event is different

– Averaging over many events may
affect the shape

C(q,K) ≈ 1 +

〈
|
∫

d4xS(x,K) exp(iqx)|2
〉
ev〈(∫

d4xS(x,K)
)2〉

ev

Jakub Cimerman The Shape of the Correlation Function 31 July 2020 6 / 18



Effects leading to non-Gaussianities

Ensemble averaging

One-dimensional projection

~K averaging

Resonance decays

– Correlation function as a function
of a scalar quantity

– Lorentz-invariant Q

Q2
LI = −qµqµ

– Longitudinally boost-invariant Q

Q2
LBI =

√
(p1x − p2x)2 + (p1y − p2y)2 + q2long,LCMS
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Effects leading to non-Gaussianities

Ensemble averaging

One-dimensional projection

~K averaging

Resonance decays

– The size of a bin in ~K cannot be
taken arbitrarily small

– Correlation function must be
averaged over some pair
momentum interval

C(q,K) ≈ 1+

∫
bin

d3K|
∫

d4xS(x,K) exp(iqx)|2∫
bin

d3K
(∫

d4xS(x,K)
)2

Jakub Cimerman The Shape of the Correlation Function 31 July 2020 6 / 18



Effects leading to non-Gaussianities

Ensemble averaging

One-dimensional projection

~K averaging

Resonance decays

– Different resonances contributes
with different lengthscales and
timescales

– Correlation function therefore
must deviate from a Gaussian
form
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Blast-Wave model

This theoretical model is characterized by the emission function

S(x, p)d4x =
mt cosh(η − Y )

(2π)3
dηdxdy

τdτ√
2π∆τ

exp

(
− (τ − τ0)2

2∆τ2

)
exp

(
−E

∗

T

)
Θ (1− r)(

t+z
t−z

)
Cooper-Frye prefactor

Spatial anisotropy describes shape of the fireball

R(θ) = R0

(
1−

∞∑
n=2

an cos (n(θ − θn))

)

Flow anisotropy describes distribution of transverse
rapidity

ρ(r, θb) = rρ0

(
1 +

∞∑
n=2

2ρn cos (n(θb − θn))

)
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DRAGON

[Comp. Phys. Comm. 180 (2009) 1642]

Monte Carlo event generator

Based on the Blast-Wave model with added resonance decays

For this study we generated 50,000 events with parameters

T = 120 MeV R = 7 fm
τfo = 10 fm/c ρ0 = 0.8

a2 ∈ (−0.1; 0.1) ρ2 ∈ (−0.1; 0.1)

To generate correlation functions we used CRAB [S. Pratt]
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Hydrodynamics

Hydrodynamical model iEBE-VISHNU [Comp. Phys. Comm. 199

(2016) 61]

2+1D hydrodynamic simulation
Israel-Stewart viscous hydrodynamics
Glauber MC initial conditions

Extension to HBT using HoTCoffeeh [Phys. Rev. C 98 (2018)

034910]

calculates event-by-event correlation functions directly from
Cooper-Frye integrals
includes all resonances
no hadron phase nor hadron cascades

For this study we generated 1,000 events with parameters

0− 10% Au+Au collisions at 200AGeV
Tfo = 120 MeV η/s = 0.08
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Comparison of different non-Gaussian effects

Results of hydrodynamical approach

Comparison of:
thermal vs. full single-event vs. event-averaged QLBI vs. QLI
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Event-by-event fluctuations

Study of averaging over events - influence of spatial anisotropies

Unaveraged - a2 = 0.05 Averaged - a2 ∈ (−0.1; 0.1)
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Event-by-event fluctuations

Study of averaging over events - influence of flow anisotropies

Unaveraged - ρ2 = 0.05 Averaged - ρ2 ∈ (−0.1; 0.1)
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Event-by-event fluctuations

Study of averaging over events - influence event plane direction

Unaveraged - θ2 = 0 Averaged - θ2 ∈ (0;π)
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Resonances

Resonance decays push down the value of α by 0.2 for both models
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Correlation function in three dimensions

3D correlation function fitted via 1D Lévy function in each
direction separately

Blast-Wave Hydro
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Profiles of emission sources

To understand the differences in different directions we check the
shape of the source which emits pions

Pions are taken with KT ∈ (300; 400) MeV
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3D fit to correlation function

3D Lévy fit to 3D correlation function
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Lévy expansion

Even Lévy parametrisation cannot describe our correlation
functions perfectly

To get the corrections to higher orders, we decompose the data
into Lévy expansion up to 1st order

C(Q) = 1 + λe−R
αQα [1 + c1L1(Q|α)]

L1 is Lévy polynomial, c1 is complex Lévy coefficient

However, such fits are very unstable
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Lévy expansion

3D Lévy fit to 3D correlation function Blast-Wave

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0

 0  100  200  300  400  500  600  700  800  900  1000

c
1

KT [MeV]

Levy 1th term

The first-order corrections are not negligible ⇒ our correlation
functions are neither Lévy-shape
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Conclusions

Index of the Lévy-stable parametrization fitted to the correlation
function may be influenced by a variety of different mechanisms

It deviates substantially from the value of 2

The most significant deviations arise from

projection from 3D relative momentum ~q to scalar Q

resonance decays

These conclusions are model-independent
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