Higher-order anisotropies in the Blast-Wave Model Workshop on Particle Correlation and Femtoscopy, Amsterdam 2017

Jakub Cimerman¹ Boris Tomášik^{1,2}

¹Czech Technical University, FNSPE, Prague

²Matej Bel University, FNS, Banská Bystrica

16.6.2017

16.6.2017

Alver, Glasma Workshop 2010

< □> < □> < □> < □> < □> < □>

Emission function of Blast-wave model

•
$$S(x,p)d^4x = \frac{m_t \cosh(\eta - Y)}{(2\pi)^3} d\eta dx dy \frac{\tau d\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau - \tau_0)^2}{2\Delta\tau^2}\right) \exp\left(-\frac{E^*}{T}\right) \Theta(1 - \bar{r})$$

•
$$\eta = \frac{1}{2} \ln \left(\frac{t+z}{t-z} \right)$$
 - spacetime rapidity

•
$$\frac{m_t \cosh(\eta - Y)}{(2\pi)^3}$$
 - Cooper-Frye prefactor

•
$$\tau = \sqrt{t^2 - z^2}$$
 - longitudinal proper time

•
$$\frac{\tau d\tau}{\sqrt{2\pi}\Delta\tau} \exp\left(-\frac{(\tau-\tau_0)^2}{2\Delta\tau^2}\right)$$
 - Gaussian smearing in proper time

• $E^* = p_{\mu}u^{\mu}$ - energy in rest frame

•
$$\bar{r} = \frac{r}{R(\theta)}$$
 - scaled radius of fireball in transverse plane

•
$$\exp\left(-\frac{E^*}{T}\right)$$
 - Boltzmann thermal distribution

< 口 > < 何

•
$$\Theta(1-\bar{r})$$
 - box profile

э

Space anisotropy

• Space anisotropy is characterized by Fourier series of the fireball radius

$$R(\theta) = R_0(1 - \frac{a_2}{a_2}\cos(2(\theta - \theta_2)) - \frac{a_3}{a_3}\cos(3(\theta - \theta_3)))$$

• Parametrisation is different than in Lisa-Retiere work [PRC70, 044907]

Space anisotropy

Higher-order anisotropies in the Blast-Wave Model

16.6.2017 5 / 19

æ

(日) (四) (日) (日) (日)

Flow anisotropy

• Flow anisotropy is characterized by Fourier series of the transverse rapidity

$$\rho(\bar{r},\theta_b) = \bar{r}\rho_0(1+2\rho_2\cos(2(\theta_b-\theta_2))+2\rho_3\cos(3(\theta_b-\theta_3)))$$

• θ_b is angle perpendicular to fireball surface

Flow anisotropy

Higher-order anisotropies in the Blast-Wave Model

16.6.2017 7 / 19

æ

Momentum spectrum

• Single-particle spectrum can be calculated via

$$P(p_t, \phi) = \frac{\mathrm{d}^3 N}{p_t \mathrm{d} p_t \mathrm{d} Y \mathrm{d} \phi} = \int S(x, p) \mathrm{d}^4 x$$

• Flow anisotropy also influences azimuthally integrated spectrum

Fourier decomposition of spectrum

• Single-particle spectrum is azimuthally dependent and thus it can be decomposed into Fourier series

$$P(p_t,\phi) = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_t \mathrm{d} p_t \mathrm{d} Y} \bigg|_{Y=0} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \theta_n)) \right)$$

• Each coefficient can be calculated via formula

$$v_n(p_t) = \frac{\int_0^{2\pi} P(p_t, \phi) \cos(n(\phi - \theta_n)) \mathrm{d}\phi}{\int_0^{2\pi} P(p_t, \phi) \mathrm{d}\phi}$$

• In an experimental analysis, one effectively takes an average over all possible values of $\Delta = \theta_3 - \theta_2$, so we have to add this averaging and integrate over Δ

Contour plots of coefficients v_2 and v_3

- There is ambiguity in determination of coefficients v_n
- We can get the same v_n with different combination of parameters a_n and ρ_n
- Model parameters are T = 120MeV, $\rho_0 = 0.8$, $R_0 = 7$ fm, $\tau_0 = 10$ fm/c, $p_t = 300$ MeV/c

• Correlation radii characterize the homogeneity region of the fireball and are given via equations

$$\begin{aligned} R_o^2(K) &= \left\langle \left(\tilde{x}_o - \beta_o \tilde{t}\right)^2 \right\rangle(K) \\ R_s^2(K) &= \left\langle \tilde{x}_s^2 \right\rangle(K) \\ R_l^2(K) &= \left\langle \left(\tilde{x}_l - \beta_l \tilde{t}\right)^2 \right\rangle(K) \\ R_{os}^2(K) &= \left\langle \tilde{x}_o \tilde{x}_s \right\rangle(K) - \beta_o \left\langle \tilde{t} \tilde{x}_s \right\rangle(K) \\ R_{ol}^2(K) &= \left\langle \left(\tilde{x}_o - \beta_o \tilde{t}\right) \left(\tilde{x}_l - \beta_l \tilde{t}\right) \right\rangle(K) \\ R_{sl}^2(K) &= \left\langle \tilde{x}_l \tilde{x}_s \right\rangle(K) - \beta_l \left\langle \tilde{t} \tilde{x}_s \right\rangle(K) \end{aligned}$$

• where
$$\begin{split} \tilde{x}_{\mu} &= x_{\mu} - \langle x_{\mu} \rangle \\ \left\langle f(x) \right\rangle(K) &= \frac{\int \mathrm{d}^4 x f(x) S(x,K)}{\int \mathrm{d}^4 x S(x,K)} \end{split}$$

イロト 不得 とくき とくき とうき

16.6.2017

HBT radii for different a_3

Higher-order anisotropies in the Blast-Wave Model

6.2017 12 / 19

э

HBT radii for different ρ_3

Higher-order anisotropies in the Blast-Wave Model

.6.2017 13 / 19

3

Oscillation amplitudes of HBT radii

• Fourier series of the correlation radii

$$R_i^2(\phi) = R_{i,3,0}^2 + \sum_{n=1}^{\infty} R_{i,3,n}^2 \cos(n(\phi - \phi_n))$$

- To avoid the trivial scaling with R_0 , we divided all amplitudes by the zeroth-order term
- The third-order amplitude is mainly set by the spatial anisotropy parameter a₃

Oscillation amplitudes of HBT radii

• Fourier series of the correlation radii

$$R_i^2(\phi) = R_{i,3,0}^2 + \sum_{n=1}^{\infty} R_{i,3,n}^2 \cos(n(\phi - \phi_n))$$

- To avoid the trivial scaling with R_0 , we divided all amplitudes by the zeroth-order term
- The third-order amplitude is mainly set by the spatial anisotropy parameter a₃

Qualitative illustration of data analysis

- After measuring v_n and one of the correlation radii $R_{i,n}^2$ we can combine contour plots and get exact parameters of both anisotropies a_n and ρ_n
- We looked at data from PHENIX, because second order anisotropies have been analysed in these data, so we fixed model parameters and determined coefficients a_3 and ρ_3 from measured v_3 and $R_{s,3}^2/R_{s,0}^2$

[STAR] Phys.Rev. C71 (2005) 044906
[PHENIX] Phys. Rev. Lett. 107 (2011) 252301
[PHENIX] Phys. Rev. Lett. 112 (2014) 222301

Qualitative illustration of data analysis

• Momentum dependence of Fourier coefficients calculated from Blast-wave model compared with data from PHENIX.

Qualitative illustration of data analysis

- Azimuthal dependence of HBT radii
- Model parameters are $p_t = 530$ MeV, $\tau = 7.8$ fm/c, $\Delta \tau = 2.59$ fm/c, $R_0 = 11.4$ fm, T = 98 MeV, $\rho_0 = 0.98$
- Difference between data and calculations shows that we can't use parameters from one experiment and use them to fit results from another experiment

- We extended and generalized Blast-wave model into higher harmonics
- There is ambiguity in determination of a_n and ρ_n just from v_n or as HBT
- Parameters a_n and ρ_n can be uniquely determined only by combination of v_n and $R_{i,n}^2$ measurements

16.6.2017

19 / 19

- Third order anisotropies generate higher-order coefficients v_n and $R_{i,n}^2$
- Reference: arXiv:1702.01735v1