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Introduction

Correlation femtoscopy has become a standard technique for the
experimental analysis of heavy-ion collisions

Two-particle correlation functions are fitted by Gaussian

However, it seems that the real shape is not Gaussian

The shape is often better reproduced by Lévy stable distribution

It has been suggested that non-Gaussian shape may identify the
critical point

We check if the observed shape can be caused by non-critical
phenomena
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HBT formalism

Correlation function is defined as ratio of two-particle spectrum
and one-particle spectra

C(p1, p2) =
P2(p1, p2)

P (p1)P (p2)
=

E1E2
d6N

dp31dp32(
E1

d3N
dp31

)(
E2

d3N
dp32

)
We use correlation function in the form

C(q,K)− 1 ≈
|
∫

d4xS(x,K) exp(iqx)|2(∫
d4xS(x,K)

)2
K =

1

2
(p1 + p2), q = p1 − p2
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Parametrization of correlation function

Gaussian parametrization

CG(~q, ~K) = 1 + λ exp

− ∑
i,j=o,s,l

R2
ijqiqj


Lévy parametrization

CL(~q, ~K) = 1 + λ′ exp

−∣∣∣∣∣ ∑
i,j=o,s,l

R
′2
ijqiqj

∣∣∣∣∣
α/2


One-dimensional Lévy parametrisation

CL(Q) = 1 + λ′ exp(−|R′Q|α)

Lévy index characterizes the shape of the correlation function

α = 2⇒ Gauss α = 1⇒ exponential
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Effects leading to non-Gaussianities

Ensemble averaging

One-dimensional projection

~K averaging

Resonance decays

Each event is different

Averaging over many events may
affect the shape

C(q,K) ≈ 1 +

〈
|
∫

d4xS(x,K) exp(iqx)|2
〉
ev〈(∫

d4xS(x,K)
)2〉

ev
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Effects leading to non-Gaussianities

Ensemble averaging

One-dimensional projection

~K averaging

Resonance decays

Correlation function as a function
of a scalar quantity

Lorentz-invariant Q

Q2
LI = −qµqµ

Longitudinally boost-invariant Q

Q2
LBI =

√
(p1x − p2x)2 + p1y − p2y)2 + q2long,LCMS
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Effects leading to non-Gaussianities

Ensemble averaging

One-dimensional projection

~K averaging

Resonance decays

The size of a bin in ~K cannot be
taken arbitrarily small

Correlation function must be
averaged over some pair
momentum interval

C(q,K) ≈ 1+

∫
bin

d3K|
∫

d4xS(x,K) exp(iqx)|2∫
bin

d3K
(∫

d4xS(x,K)
)2
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Effects leading to non-Gaussianities

Ensemble averaging

One-dimensional projection

~K averaging

Resonance decays

Different resonances contributes
with different lengthscales and
timescales

Correlation function therefore
must deviate from a Gaussian
form
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Blast-Wave model

This theoretical model is characterized by emission function

S(x, p)d4x =
mt cosh(η − Y )

(2π)3
dηdxdy

τdτ√
2π∆τ

exp

(
− (τ − τ0)2

2∆τ2

)
exp

(
−E

∗

T

)
Θ (1− r)(

t+z
t−z

)
Cooper-Frye prefactor

Spatial anisotropy describes shape of the fireball

R(θ) = R0

(
1−

∞∑
n=2

an cos (n(θ − θn))

)

Flow anisotropy describes distribution of transverse rapidity

ρ(r, θb) = rρ0

(
1 +

∞∑
n=2

2ρn cos (n(θb − θn))

)
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DRAGON

[Comp. Phys. Comm. 180 (2009) 1642]

Monte Carlo event generator

Based on the Blast-Wave model with added resonance decays

For this study we generated 50,000 events with parameters

T = 120 MeV R = 7 fm
τfo = 10 fm/c ρ0 = 0.8

a2 ∈ (−0.1; 0.1) ρ2 ∈ (−0.1; 0.1)

To generate correlation functions we used CRAB [S. Pratt]
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Hydrodynamics

Hydrodynamical model iEBE-VISHNU [Comp. Phys. Comm. 199

(2016) 61]

2+1D hydrodynamic simulation
Israel-Stewart viscous hydrodynamics
Glauber MC initial conditions

Extension to HBT using HoTCoffeeh [Phys. Rev. C 98 (2018)

034910]

For this study we generated 1,000 events with parameters

0− 10% Au+Au collisions at 200AGeV
Tfo = 120 MeV η/s = 0.08
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Comparison of different non-Gaussian effects

Results of hydrodynamical approach

Comparison of:
thermal vs. full single-event vs. event-averaged QBI vs. QLI
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Event-by-event fluctuations

Study of averaging over events - influence of anisotropies

Unaveraged - a2 = 0.05 Averaged - a2 ∈ (−0.1; 0.1)
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Event-by-event fluctuations

Study of averaging over events - influence of anisotropies

Unaveraged - ρ2 = 0.05 Averaged - ρ2 ∈ (−0.1; 0.1)
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Event-by-event fluctuations

Study of averaging over events - influence of anisotropies

Unaveraged - θ2 = 0 Averaged - θ2 ∈ (0;π)
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Resonances

Resonance decays push down the value of α by 0.2 for both models
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Correlation function in three dimensions

3D correlation function fitted via 1D Lévy function in each
direction separately

Blast-Wave Hydro
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Profiles of emission sources

To understand the differences in different directions we check the
shape of the source which emits pions

Pions are taken with KT ∈ (300; 400) MeV
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3D fit to correlation function

3D Lévy fit to 3D correlation function
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Conclusions

Lévy index may be influenced by a variety of different mechanisms

It deviates substantially from the value of 2

The most significant deviations arise from

projection from 3D relative momentum ~q to scalar Q

resonance decays

These conclusions are model-independent
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